SECTION-A BIOLOGY (1-60)

- Q1) Which of the following is not a characteristic feature of Cephalochordates?
 - a) Presence of specialized head
 - b) Absence of paired limbs or fins
 - c) Rod like notochord present extending from rostrum to tail
 - d) Dorso-lateral muscles segmented into myotomes
- Q2) Which national park is famous for 'Hangul'?
 - a) Kishtwar national park
 - b) Hemis high altitude national park
 - c) Dachigam national park
 - d) Jim corbett national park
- Q3) Which organelle is known as the powerhouse of the cell?
 - a) Nucleus
 - b) Mitochondria
 - c) Endoplasmic reticulum
 - d) Ribosomes
- Q4) Which of the following is not a STD (Sexually transmitted disease). a) Chlamydia b) HIV/AIDS
 - c) Syphilis d) Lupus
- Q5) What is the full form of ZIFT? a) Zygote Inter Fallopian Transfer b) Zygote Intra Fallopian Transfer c) Zygote In-vitro Fallopian Transfer d) Zygote In-vivo Fallopian Transfer
- Q6) Trisomy of 21st chromosome causes?
 - a) Down syndrome
 - b) Turner syndrome
 - c) Klinefelter syndrome
 - d) Patau Syndrome
- Q7) How can we perform DNA fingerprinting? a) PCR of DNA containing VNTR's b) Southern blotting using RFLP's c) Both (a) & (b) d) None of the above
- Q8) Vaccines provides a) Active immunity b) Passive immunity c) Both (a) & (b) d) None of the above
- Q9) Honey is rich in a) Anti-oxidants c) Minerals
- b) Vitamins
- d) All of the above

- Q10) Where can we use recombinant DNA technology?
 - a) Crop improvement
 - b) Medicine development c) Industrial applications
 - d) All of the above
- Q11) Why is Gene therapy still not a permanent cure?
 - a) It's very expensive and difficult to perform
 - b) The cells die after some time and patient may need periodic infusions
 - c) Virus sometimes effects other type of cells too which may cause sickness and other diseases.
 - d) All of the above
- Q12) Which of the following is not an ethical issue regarding recombinant DNA technology? a) Gene pollution
 - b) Superweed generation
 - c) Restriction of natural flow of gene pool
 - d) None of the above
- Q13) Which of the following is known as the suicide bags of the cell?
 - a) Ribosomes b) Lysosomes c) Nucleosomes
 - d) Centrioles
- Q14) In an ECG, which wave represents 'ventricular depolarization'?
 - a) P wave b) QRS wave d) None of the above c) T wave
- Q15) Sickle cell anemia is caused by?
 - a) Point mutation in beta globulin chain
 - b) Point mutation in alpha globulin chain
 - c) Frame shift mutation in beta globulin chain
 - d) Frame shift mutation in alpha globulin chain
- Q16) The most popular and outstanding natural system of classification is that of
 - a) Hutchinson b) Bentham and Hooker c) Bessey
 - d) De Candole
- Q17) What is the shape of chloroplast in Chlamydomonas?
 - a) Cup shaped

c) Stellate

a) Seeds

- b) Spiral d) Collar shaped
- Q18) Gymnosperms do not bear
 - b) Fruits
 - c) Cones d) None of them

UG CET-202

SET-B			UG CET-2022
Q19) The principal compone	ents of xylem tissue	Q29) The light-sensitive lettu	ice seeds that are
include		imbibing are treated wit	th red light followed
a) Companion cells an	d tracheids	by far red light:	
b) Fibres and sieve tub		a) The Pr form is conv	erted to the active PFr
c) Companion cells an		form	
d) Tracheids and vesse	els	b) The PFr form is not	
020) In diasta there is a law	an of manistamatic calls	c) Germination takes p	
Q20) In dicots, there is a lay in-between the phloem		d) Germination does not	ot take place
a) Protoxylem	b) Protophloem	Q30) The condition where so	ome flowers never onen
<i>, ,</i>	d) Differentiation zone		-pollination is known as
	<i>a) 2 m a b a b b b b b b b b b b</i>	a) Cleistogamy	b) Homogamy
Q21) Potato belongs to which	h family?	c) Geitonogamy	d) Xenogamy
a) Solanaceae	b) Liliaceae		
c) Asteraceae	d) Poaceae	Q31) The process of double f	
	,	demonstrated for the fir	
Q22) Vascular bundles are so	cattered in	a) Zimmerman	b) Nawaschin
a) Dicot Stem	b) Dicot root	c) Sherrington	d) Naudin
c) Monocot Stem	d) Algae	(0.22) The lower most call of	the sugranger adjacent
,	, 8	Q32) The lower most cell of to the embryonal cell is	
Q23) Polyarch and exarch va	ascular bundles occur in	a) Ephiphysis	b) Hypophysis
a) Dicot stem	b) Monocot stem	c) Paraphysis	d) Periphysis
c) Dicot root	d) Monocot root		d) renpnysis
		Q33) The nucellus of ovule is	s surrounded by one or
Q24) The minimum number		two cellular coats called	-
capable of acting coope		a) Columella	b) Lamellae
photochemical act to ev		c) Integuments	d) Chalaza
	lecule of CO_2 is known as		
a) Quantum unit	o) Quantasonno ante	Q34) If a part of flower other	
c) Photosynthetic unit	d) Photochemical unit	involved in the formation	on of fruit, it is called
Q25) In C4 plants, initially t	he carbon dioxide of the		
atmosphere comes in c		a) Parthenocarpic fruitc) True fruit	d) Aggregate fruit
cells where it combines	1 0	c) mue mun	u) Aggregate fruit
pyruvic acid to form		Q35) Which of the following	characteristic of pea
a) Malic acid	b) Aspartic acid		Iendel in his experiments
	d) Pyruvic acid	a) Seed colour	b) Seed Shape
		c) Pod length	d) Flower position
Q26) The enzymes for the K	-		
a) Matrix of the mitoc		Q36) Lack of independent as	sortment of two genes
b) Cristae of the mitod		is due to	
c) Outer membrane of	the mitochonria	a) Recombination	b) Crossing over
d) Chloroplast		c) Linkage	d) Repulsion
Q27) The factors that favour	guttation include	Q37) In the DNA strand has	nitrogen hase seguence
a) High water absorpt	•	ATTGCC, the mRNA f	
b) Low root pressure		have?	
c) High rate of transpi	ration	a) UAACGG	b) ATTGCC
d) All of the above		c) ATCGGG	d) UGGACC
		,	, ,
Q28) The highest concentrat	ion of auxin is found in	Q38) The accepted hypothesi	-
a) Nodes of the plant		a) Conservative theory	
b) Growing tips of the		b) Dispersive theory	
c) Dead cells of the pl	ant	c) Semi-conservative the	-
d) None of the above		d) Evolutionary theory	

Q39) A Codon contains ho	w many nucleatides?	O_{50} P_{roc}	ance of mucous	over the skip of frog	
a) One	b) Two		n adaptation for:	over the skin of frog	
c) Three	d) Four		Succal respiration		
c) Thee	d) Four		Cutaneous respira		
Q40) Which of the followi	ng would appear as the		ulmonary respira		
pioneer organisms or			Sone of the above		
a) Green algae	b) Lichens	u) IV		<u>,</u>	
c) Liverworts	d) Mosses	Q51) The	differentiation o	f spermatids into	
		-	rmatozoa is calleo	d as	
Q41) If we combine all the		a) S	permatogenesis		
the earth, then it is ca			permatocytogene	esis	
a) Biome	b) Habitat		permiogenesis		
c) Biosphere	d) Ecology	d) N	None of the above	e	
Q42) Which is an example	e of an ex-situ	Q52) Whi	ich of the followi	ing disease is caused	
conservation of biodi	•	•	Plasmodium viva		
a) Sacred groves	b) Wildlife sanctuary	· · · · · ·	Ialaria	b) Chagas disease	
c) Seed bank	d) National Park	c) S	curvy	d) Sleeping sickness	
Q43) Who is known as the	Father of tissue culture?	Q53) Whi	ich of the follow	ing phylum is the most	
a) Bonner	b) Laibach		nitive among bila		
c) Haberlandt	d) Gautheret		Coelentrata	b) Porifera	
		c) P	latyhelminthes	d) Annelida	
Q44) Biofertilizers are a) Some bacteria and	l cyanobacteria	O54) Clit	ellum in earthwo	orms surrounds the	
	by ploughing in green	- /	nents	ins surrounds the	
plants	i by ploughing in green		2-14 th	b) 14-16 th	
-	ed by decay of dead plants		6-18 th	d) 13-15 th	
	ed by mixing cattle dung	0) 1	0 10	u) 15 15	
with crop residue			dling of milk in s action of	small intestine occur due	to
Q45) Golden rice is a pron	nising transgenic crop.	a) R	lennin	b) Trypsin	
	ltivation, it will help in	c) R	lenin	d) Chymotrypsin	
a) Alleviation of vit	amin-A deficiency				
b) Pest resistance				ing gland performs both	
c) Herbicide toleran	ice		ocrine and exocri		
d) Producing fuel fr	om rice		ancreas	b) Hypothalamus	
	. 1 1 0	c) 0	Dvary	d) Testes	
Q46) Cell drinking is exclu		057) Uar	dy Weinberg law	i oporatas on?	
a) Phagocytosisc) Endocytosis	b) Pinocytosisd) Exocytosis	- /	lon-evolving pop	1	
c) Endocytosis	u) Exocytosis		low evolving pop		
Q47) During which phase	of the cell cycle		andomly evolving		
chromosomes replica			Fast evolving pop		
a) G_1 phase	b) G_2 phase		and choiring pop		
c) S phase	d) G_0 phase	Q58) Whi	ich of the follow	ing is a poikilotherm?	
	-/ -0 P		Catfish	b) Silverfish	
Q48) Resting membrane p	otential of a neuron is		igeon	d) All of the above	
approximately		,	-		
a) -70 mV/-65mV	b) -70 μV	Q59) Ant	ibody 'A' and 'B	can be found in a perso	n
c) +70 μV	d) +70 mV		•	following blood group?	
· ·		a) A	-	b) B	
Q49) During which stage of	of cell cycle, crossing	c) A	'B	d) O	
over take place?					
a) Leptotene	b) Zygotene			ing is phospholipid?	
c) Pachytene	d) Diplotene		r	b) Glycogen	
		c) 0	Dleic acid	d) Prostaglandin	
		1			

SET-B			UG CET-2022
SECTION-A AGRICULTURE(1A-60A)		Q13A) Equipment use	d to apply sticides in dry form is known as-
Q1A) AMUL is a		a) Sprayer	b) Injector
a) Cooperative	b) Self-Help Group	c) Duster	, 5
c) Company	d) Society	c) Duster	d) Spinikier
		Q14A) Chaff cutter is	used for
Q2A) Only one seller of prod		a) Cutting fodd	
	b) Perfect competition	c) Cane crushir	
c) Monopsony	d) Monopoly		
Q3A) For hard, dry and stony	v soil surface which		f a mould board plough is
kind of plough is suita		usually made o	
a) Mould Board Plou		a) Mild steel	, E
b) Disc Plough	1511	c) Soft steel	d) Malleable steel
c) Chisel Plough		$O(6\Lambda)$ The aconomy c	of Jammu and Kashmir UT
d) Rotary Plough		- ,	dependent on
d) Rotary Plough		a) Industries	dependent on
Q4A) Which is not a type of	drought?	b) Electricity g	reneration
a) Hydrological	b) Meteorological	c) Agriculture	
c) Biological	d) Socio-economic	d) Tourism	
		u) rounsin	
Q5A) Conservation tillage lea		Q17A) Major crops of	Jammu division of J&K UT are
residue on the surface		a) Wheat, rajma	as and rice
a) <10%	b) 10-15%	b) Wheat, maiz	e and rice
c) 15-25%	d) >30%	c) Rice, cowpe	a and wheat
O(A) What is parameters of	aanhan in waaraht	d) Maize, rice a	and pearl millet
Q6A) What is percentage of o iron?	carbon in wrought		
	b) $1.00/$	Q18A) Where first Ag	riculture University of India
a) $<1\%$	b) 1-2% d) >4%	was established	1?
c) 2-3%	u) >4%	a) Srinagar	b) Ludhiana
Q7A) Which is the largest pro-	oducer of sugarcane in	c) Kanpur	d) Pantnagar
the world?	outeer of sugareane m		
a) Australia	b) India	Q19A) IRRI is located	
c) Brazil	d) China	a) USA	b) Australia
,	<i>,</i>	c) Philippines	d) India
Q8A) If driving (effort) whee		(0.204) Which of the fo	ollowing is a Green Manure
	as 60 teeth what is gear	Crop?	showing is a Green Manure
ratio?		a) Daincha	b) Potato
a) 1:4	b) 4:1	c) Barley	d) Sesame
c) 2:3	d) 3:2		
Q9A) Most common type of	irrigation numps are	Q21A) For applying 10	00 kg of nitrogen, how much
	b) Mixed flow pump	urea would one	e use?
	d) Jet pump	a) 310 kg	b) 218 kg
	.) F F	c) 100 kg	d) 146 kg
Q10A) The metering device i	is part of which		
agricultural implemer	nt?		refers to cultivation of
a) Paddy Thresher	b) Mould Board Plough	a) Silkworm	b) Trees
c) Chaff Cutter	d) Seed drill	c) Medicinar p	lants d) Oilseed crops
0114) 1111	11 , 1 11	Q23A) ADP to ATP cl	hange is called
Q11A) Which is not a manua	my operated weeding	a) Respiration	•
tool?	$h \in \mathbf{W}$	c) Photosynthe	, 1
a) Hand Hoe	b) Wheel Hoe d) Potery Cultivator		
c) Hoe cum rake	d) Rotary Cultivator	Q24A) SRI is a technic	-
Q12A) Tillage operation doe	s not include	a) Cotton	b) Rice
a) Digging	b) Flushing	c) Wheat	d) Maize
c) Overturning	d) Stirring		
<i>c, c, c</i>	-, -, -, -, -, -, -, -, -, -, -, -, -, -		

SET-B		UG CET-2022
Q25A) Pink bollworm is a pest of	Q34A) Conservation tilla	ge saves?
a) Sugarcane b) Gram	a) Soil	b) Moisture
c) Cotton d) Jute	c) Time	d) All of above
, , , , , , , , , , , , , , , , , , , ,		,
Q26A) Khaira disease of rice can be controlled by	Q35A) Concentration of c	carbon dioxide in
spraying—	atmosphere is	
a) Calcium bicarbonate	a) 330 ppm	b) 350 ppm
b) Calcium carbonate	c) 370 ppm	
c) Calcium sulphate	<i>c) s</i> / <i>c</i> / <i>p</i> / <i>m</i>	a) 100 ppm
d) Zinc sulphate	Q36A) Which of the followegetable?	owing is not a fruit
Q27A) Which is a variety of Oat?	a) Tomato	b) Chilli
a) Kent b) Jaya	c) Potato	d) Brinjal
c) Pusa Giant d) Sonalika		u) Dingu
c) Pusa Giant (1) Sonanka	Q37A) Botanical name of	Damask rose is
Q28A) The relative proportion of sand, silt and clay	a) Rosa chinensis	
is called	,	,
	c) Rosa moschata	d) Rosa multiflora
a) Soil taxonomy		, , , , ,, ,,
b) Soil water holding capacity	Q38A) Central Institute fo	or temperate horticulture
c) Soil structure	is located at	
d) Soil texture	a) Pantnagar	b) Srinagar
	c) Lucknow	d) Shimla
Q29A) Soil mulch is useful for		
a) Minimizing evaporation loss	Q39A) Which of the follo	owing State/UT is highest
b) Improving fertility of soil	producer of apple	
c) Improving drainage		esh b) Jammu & Kashmir
	,	· · · · · · · · · · · · · · · · · · ·
d) Improving soil structure	c) Uttarakhand	d) Uttar Pradesh
Q30A) Growth of plants toward light is called	Q40A) Which of the follo	wing vegetable crop is
	direct seeded?	
a) Photoperiodism b) Photorespiration	a) Tomato	b) Onion
c) Phototropism d) Photochromatism	c) Chilli	d) Okra
O21A) A homomorphic trait in an anomiam is defined		
Q31A) A homozygous trait in an organism is defined	Q41A) Biennial bearing i	s found in
as-	a) Pomegranate	b) Apple
a) The appearance of a trait in that organism	c) Mango	d) Grape
b) Appearance of same trait in two organisms		/ I
c) The presence of two different alleles in	Q42A) Which of the follo	owing is not a
that organism	leguminous vegeta	
d) Presence of two identical alleles in that	a) Pea	b) French bean
organism	c) Cowpea	d) Okra
-	c) compea	u) UNIA
Q32A) Which of the following were not taken into	043A) Central Potato Res	search Institute is located at
accounts in Mendel's experiments on	a) Shimla	b) Srinagar
hybridization?	c) Meerut	d) Lucknow
a) Plant height and flower position	c) meetut	a) Luckilow
b) Length of pods and width of pods	044A) Saffron is grown r	nostly in the State/UT of
c) Flower colour and seed colour		-
d) Pod shape and pod colour	,	esh b) Jammu & Kashmir
, <u>1</u> F	c) Uttarakhand	d) Uttar Pradesh
Q33A) Which of the following crops have been		
approved for commercial cultivation in India?	Q45A) Microbial digestic	on occur in
	a) Poultry	b) Pig
a) Golden rice and high protein maize	c) Sheep	d) Horse
a) Golden rice and high protein maizeb) Bt Maize and Bt rice	c) sheep	<i>a)</i> 110150
b) Bt Maize and Bt rice	c) Sheep	
	c) sheep	d) Holse

SET-B
Q46A) Osteomalacia a disease of adult is caused due
to deficiency of a) Calcium b) Magnesium c) Fluorine d) Iodine
Q47A) The average nitrogen content of protein isa) 15%b) 16%c) 18%d) 17%
Q48A) More commonly used factor for converting nitrogen to crude protein is a) 5.25 b) 4.25 c) 6.75 d) 6.25
Q49A) The most appropriate ratio of calcium and phosphorous for efficient utilization is a) 2:1 b) 4:1 c) 1:2 d) 1:4
 Q50A) Daily water requirement of a dairy cow is influenced by a) Composition of ration b) Milk production c) Environmental temperature d) All the above factors
Q51A) Rabies is a fatal disease of animals,caused by- a) Virus b) Bacteria c) Protozoa d) All of these
Q52A) The pH range of good silage is a) 3.8 to 4.4 b) 4.9 to 5.6 c) 6.0 to 7.0 d) None of these
 Q53A) Price of a commodity and its demand has a) Positive correlation b) Negative correlation c) Depends on the commodity d) No relationship
Q54A) The net cultivated area in India is a) 150 mha b) 143 mha c) 180 mha d) 328 mha
 Q55A) IVLP stands for a) Institute Village Linkage Project b) Integrated Village Linkage Programme c) Integrated Village Linkage Project d) Institute Village Linkage Programme
Q56A) Contribution of agriculture to GDP is a) 14% b) 20% c) 24% d) 34%
 Q57A) White revolution is related to a) Food grain production b) Fish production c) Egg production

d) Milk production

UG CET-2022 Q58A) Support price for crop produce is fixed based on the recommendations of ---a) NAFED b) CACP c) Ministry of Agriculture d) CCI Q59A) The factors of production are---a) Land and labour b) Land, labour, capital c) Land, labour, capital, management d) Land, labour, money, machine Q60A) ATMA stands for---a) Agriculture Technology Management Agency b) Agriculture Transfer Model Assessment c) Agriculture Transfer Management Assessment d) Agricultural Tourism and Management Agency **SECTION-A MATHEMATICS(1B-60B)** Q1B) If x + y = k is a tangent to the parabola $y^2 = 12x$ then k =a) 9 b) -9 c) -3 d) 3 Q2B) If in a hyperbola, the distance between the foci is 10 and the transverse axis has length 8, then the length of its latusrectum is b) $\frac{9}{2}$ a) 9 d) $\frac{64}{2}$ c) $\frac{32}{3}$ Q3B) A point P moves so that sum of its distances from (-ae, 0) and (ae, 0) is 2a, then the locus of P is a) $\frac{x^2}{a^2} - \frac{y^2}{a^2(1-e^2)} = 1$ b) $\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$ c) $\frac{x^2}{a^2} + \frac{y^2}{a^2(1+e^2)} = 1$ d) $\frac{x^2}{a^2} - \frac{y^2}{a^2(1+e^2)} = 1$ Q4B) If $x_1, x_2, ----, x_{18}$ are observations such that

$$\sum_{j=1}^{18} (x_j - 8) = 9 \text{ and } \sum_{j=1}^{18} (x_j - 8)^2 = 45,$$

then the standard deviation of these observations is

observations is a) $\frac{3}{2}$ b) 5

c) $\sqrt{5}$

d)
$$\sqrt{\frac{81}{34}}$$

SET-B	
Q5B) Mean of 100 items is 49. It was discovered	Q12B) If
that three items which should have been	μî
60, 70, 80 were wrongly read as 40, 20, 50	edg
respectively. The correct mean is a) 48 b) 50	der
c) 80 d) 40	a) (
	c) /
Q6B) Which of the following is not a measure of	Q13B) Th
central tendency	ra
a) Mean b) Median	a) -
c) Mode d) Range	c) -
Q7B) A drawer contains 5 brown socks and 4 blue	()
socks well mixed. A man reaches the drawer	Q14B) If
and pulls out 2 socks at random. The	to
probability that they match is	of
a) $\frac{4}{6}$ b) $\frac{5}{6}$	a) -
a) $\frac{4}{9}$ b) $\frac{5}{9}$ c) $\frac{5}{8}$ d) $\frac{5}{12}$	b) :
$\frac{c}{8}$ $\frac{d}{12}$	c) :
OOD) Events A. P. C. and mutually avaluative events	d) :
Q8B) Events A, B, C are mutually exclusive events 3x+1	015D) TI
such that $P(A) = \frac{3x+1}{3}$,	Q15B) Th x-1
$P(B) = \frac{1-x}{4}$ and $P(C) = \frac{1-2x}{2}$	$\frac{x-1}{2}$
The set of possible values of x are in the interval	2x
a) $\left[\frac{1}{3}, \frac{1}{2}\right]$ b) $\left[\frac{1}{3}, \frac{2}{3}\right]$	a) (c) (
c) $\begin{bmatrix} 1 \\ 3 \\ 7 \\ 3 \end{bmatrix}$ d) $\begin{bmatrix} 0, 1 \end{bmatrix}$	()
$C \left[\frac{1}{3}, \frac{1}{3}\right]$ $C \left[0, 1\right]$	
Q9B) The Mean and Variance of a random variable X	Q16B) W
having a Binomial distribution are 4 and 2	a) a b) a
respectively then $P(x > 6) =$	c) (
a) $\frac{1}{256}$ b) $\frac{3}{256}$	d) .
⁽¹⁾ 256 ⁽¹⁾ 256	
c) $\frac{9}{256}$ d) $\frac{7}{256}$	Q17B) In
230 230	Hii
Q10B) A, B, C, D, E, F in that order are the vertices	nui anc
of a regular hexagon with centre origin. If the	a)
position vector of vertices A and B are	c) :
$4\hat{\imath} + 3\hat{\jmath} - \hat{k}$ and $-3\hat{\imath} + \hat{\jmath} + \hat{k}$,
respectively, then $\overline{DE} =$	Q18B) Le
a) $7\hat{i} + 2\hat{j} - 2\hat{k}$ b) $-7\hat{i} - 2\hat{j} + 2\hat{k}$	nu
c) $3\hat{i} - \hat{j} - \hat{k}$ d) $-4\hat{i} - 3\hat{j} + \hat{k}$	R th
	th

Q11B) If
$$4|\vec{a}| = 12|\vec{b}| = 3|\vec{c}| = 12$$
 and
 $\vec{a} + \vec{b} + \vec{c} = 0$, then $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} =$
a) -8
b) 8
c) 13
d) -13

UG CET-2022 $\hat{t}\hat{t} - \hat{k}, \ \times \hat{t} + \hat{j} + (1 - \times)\hat{k}$ and $(\hat{i} + \lambda \hat{j} + (1 + \lambda - \mu)\hat{k})$ are three co-terminal ges of a parallelepiped, then its volume pend on Onlyb) *Only* μ d) Neither \succ nor μ Both \times and μ he angle between the lines with direction atios (4, -3, 5) and (3, 4, 5) is b) $\frac{\pi}{3\pi}$ d) $\frac{\pi}{6}$ $\frac{\pi}{2}$ 4 the foot of the perpendicular from (0, 0, 0)a plane is (1, 2, 2), then the equation f the plane is -x + 2y + 8z - 9 = 0x + 2y + 2z - 9 = 0x + y + z - 5 = 0x + 2y - 3z + 1 = 0

- 'he line $\frac{-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ meets the plane +3y - z = -4 in the point (1, 2, 3)b) (-1, -1, -1) (2, 1, 3) d) (1, 1, 1)
- Which of the following sets is empty set? $A = \{x : x^2 - 2 = 0 \text{ and } x \text{ is rational}\}$ $B = \{x : x \text{ is an even prime number}\}$ $C = \{x : 3x < 5, x \in N\}$ $D = \{x : x^2 = 25 \text{ and } x \text{ is an odd integer}\}$
- n a group of 600 persons, 550 can speak indi and 250 can speak English, then the mber of persons who can speak both Hindi d English is 100 b) 200
 - 300 d) 350

et R be a relation on the set N of natural umbers defined by $= \{(x, y) : x + 2y = 8, x \in N, y \in N\}$ then Range of R is a) {2, 4, 6} b) {2, 4, 1} c) $\{3, 2, 1\}$ d) None of these

Q19B) Let $A = \{1, 2, 3\}$ and let $R_1 = \{(1,1), (1,3), (3,1), (2,2), (2,1), (3,3)\}$ $R_2 = \{(2,2), (3,1), (1,3)\}$ and $R_3 = \{(1,3), (3,3)\}$ Then for the relations R₁, R₂ and R₃ which is true? a) R_1 is reflexive but neither symmetric nor transitive. b) R_2 is reflexive, symmetric but not transitive. c) R_3 is symmetric and transitive d) None of these Q20B) Let $f : R \to R$ given by $f(x) = x^2 + 4$ then the pre-images of 40 under f are a) ±5 b) ±6 c) ±7 d) None of these Q21B) Let $f : R \to R$ and $g : R \to R$ be two functions s.t $fog(x) = Sin x^2$ and $gof(x) = Sin^2 x$ then g(x) =a) Sinx b) Sin^2x c) $Sin x^2$ d) x^2 Q22B) If $\frac{(1+i)^2}{2-i} = x + iy$ then x + y =a) $-\frac{2}{5}$ b) $\frac{6}{5}$ c) $\frac{2}{5}$ d) $-\frac{6}{5}$ Q23B) If 1, ω , ω^2 are the cube roots of unity, then $(1-\omega+\omega^2)(1-\omega^2-\omega^4)(1-\omega^4+\omega^8)$ $(1-\omega^8+\omega^{16}) = --to 2n$ factors is b) 2²ⁿ a) 2*n* d) -2^{2n} c) 1 Q24B) Let "r" be a positive real number and "a" be a fixed real number, then $|x - a| \le r \Leftrightarrow$ a) $x \in (a - r, a + r)$ b) $x \in [a - r, a + r]$ c) x > a + rd) $x \ge a + r$ Q25B) The solution set of the inequation $\left|\frac{2}{x-4}\right| > 1, x \neq 4$ is a) 2 < *x* < 6 b) 2 > x > 6c) [2,6] d) $(2, 4) \cup (4, 6)$ Q26B) The solution set of the inequation 2x + y > 5 is a) Half plane that contains the origin.

SET-B

- b) Open half plane not containing the origin.
- c) Whole *xy*-plane except the points lying on the line 2x + y = 5
- d) None of these

	UG CET-2022	
Q27B) The point at which the maximum value of		
z = x + y, subject to the constraints		
$x + 2y \le 70, 2x + y$	$y \le 95, x, y \ge 0$ is	
obtained, is		
a) (30, 25)	b) (35,20)	
c) (40, 15)	d) (20,35)	
terms is 125 : 152, t	three terms and first six then common ratio is	
a) $\frac{1}{5}$	b) $\frac{2}{5}$	
c) $\frac{3}{5}$	d) $\frac{4}{5}$	
Q29B) If P th term of an A.F then the 10 th term is		
a) P - q + 10 c) P + q - 9	b) P + q + 11 d) P + q - 10	
Q30B) The number of perm can be made out of "EXAMINATION"	the letters of the word	
a) 2454	b) 2452	
c) 2450	d) 2448	
Q31B) The coefficient of x $(1-x)^{-2}$ is	r^r in the expansion of	
a) <i>r</i>	b) <i>r</i> + 3	
c) <i>r</i> + 1	d) <i>r</i> − 1	
Q32B) If $C_0, C_1, C_2,$	$ -$, C_n denote the nts in the expansion of	
$(1+x)^n$, then	nts in the expansion of	
$C_0 + \frac{c_1}{2} + \frac{c_2}{3} +$	$+\frac{C_n}{n+1} =$	
a) $\frac{2^{n+1}-1}{n+1}$	b) $\frac{2^n-1}{n}$	
c) $\frac{2^{n-1}-1}{n-1}$	$d)\frac{2^{n+1}-1}{n+2}$	
	equired in order that it book a passenger from	
Q34B) If $x \sin\theta = y \cos\theta$ $4z^2(x^2 + y^2) =$	$\theta = \frac{2 Z \tan \theta}{1 - \tan^2 \theta}$, then	

a) $(x^2 + y^2)^3$ c) $(x^2 + y^2)^2$ b) $(x^2 - y^2)^2$ d) $(x^2 - y^2)^3$

Page 10 of 20

UG CET-2022

Q35B) $tan25^{\circ} + tan20^{\circ} + tan25^{\circ} tan20^{\circ} =$ a) 1 b) 2 c) 3 d) 4 Q36B) If Cos $x = 3 \cos y$, then $2 \tan \frac{y-x}{2} =$ a) $Cot\left(\frac{x+y}{2}\right)$ b) $Cot\left(\frac{x+y}{4}\right)$ c) $Cot\left(\frac{y-x}{2}\right)$ d) $Cot\left(\frac{y-x}{4}\right)$ Q37B) If Cos $x \neq -\frac{1}{2}$, then the solutions of $\cos x + \cos 2x + \cos 3x = 0$ are a) $2n\pi \pm \left(\frac{\pi}{4}\right)$, $n \in Z$ b) $2n\pi \pm \left(\frac{\pi}{3}\right)$, $n \in Z$ c) $2n\pi \pm \left(\frac{\pi}{6}\right)$, $n \in \mathbb{Z}$ d) $2n\pi \pm \left(\frac{\pi}{2}\right)$, $n \in \mathbb{Z}$ Q38B) $Tan^{-1}\frac{x}{\sqrt{a^2-x^2}} =$ a) $2 Sin^{-1} \frac{x}{x}$ b) $Sin^{-1}\frac{2x}{a}$ c) $Sin^{-1}\frac{x}{a}$ d) $Cos^{-1}\frac{x}{a}$ Q39B) The solution of $tan^{-1} 2\theta + tan^{-1} 3\theta = \frac{\pi}{4}$ is a) $\frac{1}{\sqrt{6}}$ b) $\frac{1}{\sqrt{2}}$ c) $\frac{1}{3}$ d) $\frac{1}{c}$ Q40B) If $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \\ 5 & -6 & x \end{bmatrix} = 29$, Then x is a) 4 c) 2 d) 1 Q41B) If $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then $A^{-1} =$ a) 2*A* b) A c) – A d) 1 Q42B) If $x \begin{bmatrix} -3 \\ 4 \end{bmatrix} + y \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$, then a) x = 2, y = -1b) x = 22, y = 1c) x = -9, y = 10d) x = -2, y = 1Q43B) Let A be a square matrix and A^T be its transpose, then $A + A^{T}$ is a) The identity matrix b) A diagonal matrix c) A symmetric matrix d) A skew-symmetric matrix Q44B) The systems of equations 3x - y + 4z = 3x + 2y - 3z = -2 has at least one solution, if $6x + 5y + \lambda z = -3$ b) $\lambda = -5$ a) $\lambda = 5$ c) $\lambda = 3$ d) $\lambda = -3$

SET-B

Q45B) The value of $\begin{vmatrix} \log_5^{729} & \log_3^5 \\ \log_5^{27} & \log_9^{25} \end{vmatrix} \cdot \begin{vmatrix} \log_3^5 & \log_{27}^5 \\ \log_5^9 & \log_5^9 \end{vmatrix}$ is a) $\log_3{}^5 \cdot \log_5{}^{81}$ b) \log_5^9 c) 6 d) (b Q46B) If *n* is an integer, then $lt_{x\to n}[x]$: a) *n* − 1 b) *n* + 1 c) n d) does not exist Q47B) If the function $f: R \rightarrow R$ is given by $f(x) = \begin{cases} x + a \text{ if } x \le 1\\ 3 - x^2 \text{ if } x > 1 \end{cases}$ is continuous at x = 1, then a =b) 2 a) 1 c) 3 d) 4 Q48B) Derivative of \log_{10}^{x} with respect to x^{2} is a) $2x^2 \log_e^{10}$ b) $\frac{\log_{10}^{e}}{2r^{2}}$ c) $\frac{\log_{e}^{10}}{2\pi^{2}}$ d) $x^2 \log_e^{10}$ Q49B) The greatest value of $Sin^3x + Cos^3x$ is a) 1 b) 2 c) $\sqrt{2}$ d) $\sqrt{3}$ Q50B) If $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$, then f(x): a) Satisfies Rolle's theorem but $f'\left(\frac{\pi}{4}\right) \neq 0$ b) Does not satisfy Rolle's theorem but $f'\left(\frac{\pi}{4}\right) > 0$ c) Satisfies Rolle's theorem and $C = \frac{\pi}{4}$ so that $f'\left(\frac{\pi}{4}\right) = 0$ d) Satisfies langranges mean value theorem but $f'\left(\frac{\pi}{\Lambda}\right) \neq 0$ Q51B) The function $f(x) = 1 - x^3$ a) Increases everywhere b) Decreases in $(0, \infty)$ c) Increases in $(0, \infty)$ d) None of these Q52B) $\int \frac{\log (\tan x)}{\sin x \cos x} dx =$ a) $[\log_{e}(\tan x)]^{2} + C$ b) $\log(\log \tan x) + C$ c) $\frac{1}{2} [\log_e (\tan x)]^2 + C$ d) $\log(\tan x) + C$ Q53B) $\int_0^\pi \cos^3 x \, dx =$ a) 0 b) 1 d) $\frac{1}{2\sqrt{2}}$ c) -1

Page 11 of 20

Q54B) $\int_0^a \sqrt{a^2 - x^2} dx =$	
a) $\frac{1}{3} \pi a^2$	b) $\frac{1}{4} \pi a^2$
c) $\frac{\pi a^2}{2}$	d) πa^2
Q55B) The area bounded by	
$y = 3x \text{ and } y = x^2$ (in	n square units) is
a) 10	b) 5
c) 4	d) None of these
Q56B) The order of the diffe	
$\left[\frac{dy}{dx}\right]^3 + \left[\frac{dy}{dx}\right]^2 + y^4 =$	0 is
a) 4	b) 2
c) 1	d) 3
Q57B) The solution of $\frac{dy}{dx}$ + a) $2y = e^{2x} + C$	$y = e^x$ is
a) $2y = e^{2x} + C$	b) $2y e^x = e^x + C$
c) $2y e^x = e^{2x} + C$	d) None of these
Q58B) If the centriod of the points (0,0), ($\cos \theta$, s ($\sin \theta$, $-\cos \theta$) lies of $y = 2x$ then $\theta =$	$\sin \theta$) and
a) $\tan^{-1}(2)$	b) $\tan^{-1}(-2)$
c) $\tan^{-1}(3)$	b) $\tan^{-1}(-2)$ d) $\tan^{-1}(-3)$
Q59B) If 3,4 are intercepts of distance of $L = 0$ fr	om the origin is
a) 5	b) $\frac{12}{5}$
c) $\frac{5}{12}$	d) 12
Q60B) The other end of the opoint $(-1,1)$ on the c	-

point $(-1,1)$ on	the circle
$x^2 + y^2 - 6x + 4$	4y - 12 = 0 is
a) (-7,5)	b) (-7, -5)
c) (7, -5)	d) (7,5)

SECTION-B PHYSICS (61-120)

Q61) The force between the two charges is 240N. If the distance between the charges is doubled, the force will be

b) 90N a) 60N

- c) 120N d) 160N
- Q62) What will be the flux coming out of any surface a cube, if a change QµC is placed at the centre of the cube?

a)
$$\frac{Q}{6\varepsilon_0} \cdot 10^{-3}$$

b) $\frac{Q}{24\varepsilon_0}$
c) $\frac{Q}{8\varepsilon_0}$
d) $\frac{Q}{6\varepsilon_0} \cdot 10^{-6}$

- Q63) What does an electric dipole experience when it is kept in the non-uniform electric field? a) Only a force b) Only torque c) Force and torque both d) Neither force nor torque Q64) The capacitance of the capacitor is independent of
 - a) The charges present on the plate
 - b) The distance of separation between the plates
 - c) The shape of the plates
 - d) The size of the plates
- Q65) Consider two capacitances of capacity C_1 and C₂ which are connected in series and have potential difference V. What is the potential difference across C_1 ?

a)
$$(\frac{c_1}{c_1+c_2}).V$$

b) $(\frac{c_1+c_2}{c_1}).V$
c) $(\frac{c_2}{c_1}).V$
d) $(\frac{c_2}{c_1+c_2}).V$

- Q66) The resistivity of certain metals or alloys drops to zero when they are cooled below a certain temperature, this phenomenon is known as
 - a) Conductivity
 - b) Partial conductivity
 - c) Superconductivity
 - d) Non-conductivity
- Q67) In a Wheatstone bridge if the battery and galvanometer are interchanged then the deflection in galvanometer will
 - a) change in previous direction
 - b) not change
 - c) change in opposite direction
 - d) none of these.
- Q68) When a straight conductor is carrying current:
 - a) There are circular magnetic field lines around it
 - b) There are magnetic field lines parallel to the conductor
 - c) There are no magnetic field lines
 - d) None of the above

Q69) The magnetic field inside a long straight

- solenoid carrying current:
- a) Is zero
- b) Decrease as we move towards its end
- c) Is same at all points
- d) Increase as we move towards its end

UG CET-2022

SE	T-B	

- Q70) For which of the following is magnetic susceptibility negative?
 - a) Paramagnetic and Ferromagnetic materials
 - b) Paramagnetic Materials only
 - c) Ferromagnetic Materials only
 - d) Diamagnetic Materials
- Q71) What is the need for laminating the core of a transformer?
 - a) To reduce the resistance in the winding
 - b) To reduce the eddy currents
 - c) To reduce the hysteresis
 - d) None of the above
- Q72) A magnet is moved towards a coil (i) quickly (ii) slowly, then the induced e.m.f. is
 - a) larger in case (i)
 - b) smaller in case (i)
 - c) equal to both the cases
 - d) larger or smaller depending upon the radius of the coil
- Q73) Electromagnetic waves are produced by
 - a) A static charge
 - b) An accelerated charge
 - c) A moving charge
 - d) Charged particles
- Q74) The direction in which electromagnetic waves propagate is the same as that of

1 1 0	
a) $\vec{E} \times \vec{B}$	b) $\vec{B} \times \vec{E}$
c) \vec{E}	d) \vec{B}

- Q75) The ratio of the amplitude of the magnetic field to the amplitude of the electric field for electromagnetic wave propagation in a vacuum is equal to
 - a) Unity
 - b) Speed of light in vacuum
 - c) Reciprocal of the speed of light in vacuum
 - d) The ratio of magnetic permeability to electrical susceptibility in a vacuum.
- Q76) A missile is launched with a velocity less than the escape velocity. The sum of its kinetic and potential energy is
 - a) Positive
 - b) Negative
 - c) Zero
 - d) may be positive or negative

- Q77) The point at which the gravitational force acting on any mass is zero due to the Earth and the Moon system is (The mass of the Earth is approximately 81 times the mass of the Moon and the distance between the Earth and the Moon is 3,85,000km.)
 - a) 36,000 km from the moon.
 - b) 38,500 km from the moon.
 - c) 34,500 km from the moon.d) 30,000 km from the moon.
- Q78) If a body of mass m is taken out from a point below the surface of earth equal to half the radius of earth, R, to a height R above the earth's surface, then work done on it will be
 a) (5/6) mgR
 b) (6/7) mgR
 c) (7/8) mgR
 d) (8/9) mgR
- Q79) A body of mass 1 kg is attached to one end of a wire and rotated in horizontal circle of diameter 40 cm with a constant speed of 2 m/s. what is the area of cross-section of the wire if the stress developed in the wire is 5×106 N/m²?
 - a) 2 mm^2 b) 3 mm^2
 - c) 4 mm^2 d) 5 mm^2
- Q80) In a wire, when elongation is 2 cm energy stored is E. if it is stretched by 10 cm, then the energy stored will bea) Eb) 2 E
 - a) E b) 2 E c) 20 E d) 25 E
- Q81) A rocket is fired from the earth to the moon. The distance between the earth and the moon is r and the mass of the earth is 81 times the mass of the moon. The gravitational force on the rocket will be zero, when its distance from the moon is
 - a) r/5 b) r/10
 - c) r/15 d) r/20
- Q82) A body has weight W on the ground. The work which must be done to lift it to a height equal to the radius of earth R is
 - a) Equal to W X R
 - b) Greater than W X R
 - c) Less than W X R
 - d) Cannot be estimated

UG CET-2022

- Q83) A Carnot engine uses first an ideal monoatomic gas (γ =5/3) and then an ideal diatomic gas (γ =7/5) as its working substance. The source and sink temperatures are 411 °C and 69 °C respectively and the engine extract 1000 J of heat from the source in each cycle. Then,
 - a) the efficiencies in the two engines are in the ratio 21:25.
 - b) the area enclosed by the P-V diagram in the first case only is 500J.
 - c) the area enclosed by the P-V diagram in the both cases is 500J.
 - d) the heat energy rejected by the engine in the first case is 600J while in the second case is 714.3J.
- Q84) Heat is absorbed by a body but its temperature does not rise. Which of the following statement explains the phenomenon
 - a) Only K.E. of vibration increases.
 - b) Only P.E. on inter molecular force changes
 - c) No increase in internal energy takes place
 - d) Increase in Kinetic energy is balanced by decrease in potential energy.
- Q85) Two chambers, one containing m1 gm of a gas at P1 pressure and other containing m2 gm of a gas at P2 pressure, are put in communication with each other. If temperature remains constant, the common pressure reached will be

a)
$$\frac{P1 P2 (m1+m2)}{P2 m1+P1 m2}$$
 b) $\frac{m1 m2 (P1+P2)}{P2 m1+P1 m2}$
c) $\frac{P1 P2 m1}{P2 m1+P1 m2}$ d) $\frac{P2 m1 m2}{P2 m1+P1 m2}$

Q86) At a given temperature and pressure 64 gm of Oxygen and X gm of H₂ occupy the same volume. Then X=gm

a)	1	b)	2
c)	3	d)	4

Q87) A closed hollow insulated cylinder is filled with gas at 0^{0} C and also contains an insulated piston of negligible weight and negligible thickness at the middle point. The gas at one side of the piston is heated to 100^{0} C. If the piston moves 5cm, the length of the hollow cylinder is

a)	13.65 cm	b)	27.3 cm

- c) 64.6 cm
- d) 54.6 cm

- Q88) Two simple Harmonic Motions of angular frequency 100 and 1000 rad S^{-1} have the same displacement amplitude. The ratio of their maximum accelerations is :
 - a) $1:10^3$ b) $1:10^4$
 - c) 1:10 d) $1:10^2$
- Q89) If a positively charged pendulum is oscillating in a uniform electric field as shown in figure. Its time period of SHM as compared to that when it was uncharged.

- a) Will increase
- b) Will decrease
- c) Will not change
- d) Will first increase then decrease
- Q90) Three waves of equal frequency having amplitudes 10 mm, 4 mm and 7 mm arrive at a given point with successive phase difference $\frac{\pi}{2}$. The amplitude of the resulting wave (in mm) is given by: a) 7 b) 6 c) 5 d) 4

Q91) Which of the following is true about light?

- I It is electromagnetic wave
- II It does not propagate in vacuum III Its maximum speed is approximately 3×10^8 m/s
- a) I only b) I and II only
- c) I and III only d) I, II, and III
- Q92) The speed of light in a certain material is 50% of its speed in vacuum. What is the refractive index of the material?
 a) 1.5 b) 0.5
 c) 6.0 d) 2
- Q93) Parallel rays of light strike a convex lens. Which of the following diagrams show what happens to the rays when they strike the lens?

SET-B	UG CET-2022
Q94) An object of height 10 cm is placed 50 cm in	Q101) Half-lives of two radioactive elements A and H
front of a bi-convex lens with a focal length	are 20 minutes and 40 minutes respectively.
of 20 cm. Which of the following is true	Initially, the samples have equal number of
about the image?	nuclei. Calculate the ratio of decayed numbers
I The image is virtual	of A and B nuclei after 80 minutes.
II The image is situated on the opposite side	a) 4/5 b) 5/4
as the object	c) $\frac{2}{3}$ d) $\frac{3}{2}$
0	c) 2/3 d) 3/2
III The image is inverted	0102) When a DN junction is forward biased
a) I only b) I and II only	Q102) When a PN junction is forward biased
c) II and III only d) II only	a) Depletion region decreases
	b) Minority carriers are not affected
Q95) For an object in front of a plane mirror, which	c) Holes and electrons move away from
of the following about its images is (are) true?	junction
I The image is real	d) All of above
II The image is upright	
III The height of the image is twice the image	Q103) Which type of special purpose diode is
of the object	formed by a metal and semiconductor?
a) I, II and III b) I and II only	a) Varactor b) Tunnel
c) II only d) I and III only	c) Zener d) Schottky
Q96) What is the de Broglie wavelength of an	Q104) A semiconductor in its purest form is known
electron which is accelerated through a	as_
potential difference of 10 kV.	a) Superconductor
a) 0.1227 A b) 3.88 A	b) Insulator
c) 0.388 A d) 1.227 A	c) Intrinsic semiconductor
	d) Extrinsic semiconductor
Q97) The radius of the 5th orbit of hydrogen atom is	
13.25 Å. Calculate the wavelength of the	Q105) On which principle optical fiber works?
electron in the 5th orbit.	a) Scattering of light
a) 83.21 A b) 16.64 A	b) Total internal reflection
c) 20.8 A d) 3.33 A	c) Total internal absorption
c) 20.011 d) 5.5511	d) Optical rotation
Q98) Find the (i) angular momentum (ii) velocity of	
the electron in the 5th orbit of hydrogen	Q106) An object of mass 3kg at rest. Now a force of
atom $(h - 6.6 \times 10^{-34} \text{ Js} \text{ m} - 9.1 \times 10^{-31} \text{ kg})$	$\vec{F} = 6t^2\hat{\imath} + 4t\hat{\jmath}$ is applied on the object,
atom. (h = 6.6×10^{-34} Js, m = 9.1×10^{-31} kg) a) Angular momentum = 10.5×10^{-34} kg m ² s ⁻¹ ,	then velocity of object at t= 3s is: $18\hat{i} + 6\hat{j}$
velocity = 4.4×10^5 ms ⁻¹	a) $18\hat{i} + 3\hat{j}$ b) $18\hat{i} + 6\hat{j}$
velocity = 4.4×10^{-118} b) Angular momentum = 10.5×10^{-34} tra m ² - ¹	c) $3\hat{i} + 18\hat{j}$ d) $18\hat{i} + 4\hat{j}$
b) Angular momentum = 10.5×10^{-34} kg m ² s ⁻¹ , velocity = 2.2×10^5 ms ⁻¹	$c_{j} = c_{j} = c_{j$
c) Angular momentum = 5.25×10^{-54} kg m ² s ⁻¹ ,	Q107) A mass of 1Kg is thrown up with a velocity
velocity = $4.4 \times 10^5 \text{ ms}^{-1}$	of 100m/s. After 5 sec, it explodes into two
d) Angular momentum = 5.25×10^{-34} kg m ² s ⁻¹ ,	parts. One part of mass 400mg comes down
velocity = $2.2 \times 10^5 \text{ ms}^{-1}$	with a velocity of 25 m/s. The velocity of
	other part is: (Take $g = 10 \text{m/s}^2$)
Q99) Calculate the number of nuclei of carbon-14	a) 40m/s b) 80m/s
undecayed after 22,920 years if the initial	c) 100m/s d) 60m/s
number of carbon-14 atoms is 10,000. The	
half-life of carbon-14 is 5730 years.	Q108) A block of mass 10kg placed on rough
a) 1432 b) 358	horizontal surface having coefficient of
c) 1074 d) 625	friction μ =0.5, if the horizontal force of
,	100N acting on it, then acceleration of the
Q100) A hydrogen atom is excited by radiation of	block will be
wavelength 97.5 nm. Find the principal	a) $10m/s^2$ b) $5m/s^2$
quantum number of the excited state.	c) $15m/s^2$ d) $0.5m/s^2$
a) 4 b) 3	, , , , , , , , , , , , , , , , , , , ,
c) 5 d) 2	
c) 5 u) 2	

		UG CET-202		
	00gm is ejected from a gun	Q117) The moment of Inertia of a disc of mass M		
of mass 4 Kg by an explosion that generates 1.05KJ of energy. The initial velocity of		and radius R about an axis, which is tangential to the circumference of the disc		
a) 40m/s	b) 120m/s	a) $\frac{5}{4}$ MR ² b) $\frac{1}{2}$ MR ²		
c) 100m/s	d) 80m/s			
		c) $\frac{3}{2}$ MR ² d) $\frac{4}{5}$ MR ²		
O110) The potential ene	rgy of a long spring when	$C) = \frac{1}{2} MR \qquad C) = \frac{1}{5} MR$		
	n is U. If the spring is			
	n, the potential energy	Q118) Which of the following have the same		
stored in it is:	ii, the potential energy	dimensions as planks constant?		
a) U/4	b) 4U	a) Moment of Momentum		
<i>,</i>	/	b) Moment of force		
c) 8U	d) 16U	c) Momentum/distance		
0111) Two identical had	la A and P having valuation	d) Force/distance		
	lls A and B having velocities	d) i oree/distance		
	3m/s respectively collide	Q119) A body under the action of a force		
	dimension. The velocities			
	the collision respectively	$\vec{F} = 6\hat{\imath} - 8\hat{\jmath} + 10\hat{k}$ acquires an acceleration		
will be		of 1m/s^2 . The mass of this body must be:		
a) -0.5m/s and 0.3	3m/s	a) 10 Kg b) 20 Kg		
b) 0.5m/s and -0.	3m/s	c) $10\sqrt{2}$ Kg d) $2\sqrt{10}$ Kg		
c) -0.3m/s and 0.5	5m/s			
d) 0.3m/s and 0.5		Q120) If Energy (E), Velocity (V), and Time (T) a		
		chosen as the fundamental quantities. The		
Q112) If the magnitude	of sum of two vectors	dimensional formula of Surface Tension is:		
	agnitude of difference of two	a) $[E V^{-2} T^{-1}]$ b) $[E V^{-1} T^{-2}]$		
-	-	$\begin{array}{c} a) [E V I] \\ b) [E V I] \\ c) [E V I] $		
	e between these vectors is:	c) $[E V^{-2} T^{-2}]$ d) $[E^{-2} V^{-1} T^{-3}]$		
a) 45°	b) 180°	SECTION C CHEMISTRY(121 190)		
c) 0°	d) 90°	SECTION-C CHEMISTRY(121-180)		
Q113) The particle has	initial valuative (21 + 11) and	Q121) An activating substituent group activates		
	11111a1 velocity $(5l + 4l)$ and	Q121) An activating substituent group activates		
		a) Ortho position		
has acceleration($(0.4\hat{\imath} + 0.3\hat{\jmath})$. Its speed			
has acceleration(after 10 sec is:	$(0.4\hat{\imath} + 0.3\hat{\jmath})$. Its speed	a) Ortho positionb) Para position		
has acceleration(after 10 sec is: a) 7 units	$(0.4\hat{i} + 0.3\hat{j})$. Its speed b) $7\sqrt{2}$ units	a) Ortho positionb) Para positionc) Ortho and para positions		
has acceleration(after 10 sec is:	$(0.4\hat{\imath} + 0.3\hat{\jmath})$. Its speed	a) Ortho positionb) Para position		
has acceleration(after 10 sec is: a) 7 units c) 8.5 units	($0.4\hat{i} + 0.3\hat{j}$). Its speed b) $7\sqrt{2}$ units d) 10 units	a) Ortho positionb) Para positionc) Ortho and para positions		
has acceleration(after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra	$(0.4\hat{i} + 0.3\hat{j})$. Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum	a) Ortho positionb) Para positionc) Ortho and para positionsd) Meta position		
has acceleration(after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj	 (0.4î + 0.3ĵ). Its speed b) 7√2 units d) 10 units nge and the maximum ectile are equal. The angle 	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism 		
has acceleration(after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr	 (0.4î + 0.3ĵ). Its speed b) 7√2 units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: 	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism 		
has acceleration(after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example 		
has acceleration(after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two	$(0.4\hat{i} + 0.3\hat{j})$. Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $\vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if	$(0.4\hat{i} + 0.3\hat{j})$. Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $\vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution Q124) Select the incorrect statement 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is a) 45°	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $\vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the b) 30°	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is a) 45° c) 90°	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units Inge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $ \vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the b) 30° d) 60°	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution Q124) Select the incorrect statement a) The addition reaction occur more 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is a) 45° c) 90°	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $\vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the b) 30° d) 60° cm and its mass per unit	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution Q124) Select the incorrect statement a) The addition reaction occur more 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is a) 45° c) 90° Q116) A rod of length 3 length is directly p	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $\vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the b) 30° d) 60° cm and its mass per unit proportional to the distance	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution Q124) Select the incorrect statement a) The addition reaction occur more frequently in the alkenes than the alkyne b) The pi system of the alkynes gets 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is a) 45° c) 90° Q116) A rod of length 3 length is directly p x from one of its of	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units Inge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $ \vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the b) 30° d) 60° cm and its mass per unit proportional to the distance ends then its centre of	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution Q124) Select the incorrect statement a) The addition reaction occur more frequently in the alkenes than the alkyne b) The pi system of the alkynes gets weakened when they lose the pi atom 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is a) 45° c) 90° Q116) A rod of length 3 length is directly p x from one of its of gravity from that	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units nge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $\vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the b) 30° d) 60° cm and its mass per unit proportional to the distance ends then its centre of end will be	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution Q124) Select the incorrect statement a) The addition reaction occur more frequently in the alkenes than the alkyne b) The pi system of the alkynes gets weakened when they lose the pi atom c) Alkynes readily undergo oligomerization 		
has acceleration (after 10 sec is: a) 7 units c) 8.5 units Q114) The horizontal ra height of the proj of projection of pr a) $\theta = \tan^{-1}(1/4)$ c) $\theta = \tan^{-1}(2)$ Q115) \vec{A} and \vec{B} are two between them, if value of θ is a) 45° c) 90° Q116) A rod of length 3 length is directly p x from one of its of	(0.4 \hat{i} + 0.3 \hat{j}). Its speed b) $7\sqrt{2}$ units d) 10 units Inge and the maximum ectile are equal. The angle rojectile is: b) $\theta = \tan^{-1}(4)$ d) $\theta = 45^{\circ}$ vectors and θ is the angle $ \vec{A} \times \vec{B} = \sqrt{3} (\vec{A}.\vec{B})$, the b) 30° d) 60° cm and its mass per unit proportional to the distance ends then its centre of	 a) Ortho position b) Para position c) Ortho and para positions d) Meta position Q122) Which among the following does not exhibit geometric isomerism a) 1-hexene b) 2-hexene c) 3-hexene d) 4-hexene Q123) Alkanes undergo halogenation. It is example a) Nucleophilic substitution b) Elimination c) Free-radical substitution d) Electrophilic substitution Q124) Select the incorrect statement a) The addition reaction occur more frequently in the alkenes than the alkyne b) The pi system of the alkynes gets 		

CET-2022

a) m-bromophenol

SET-B

- b) o-and p-bromophenol
- c) 2,4-dibromophenol
- d) 2,4,6 tribromephenol

Q126) How are alcohols prepared from haloalkanes?

- a) By treating with concentrated H_2SO_4
- b) By heating with aqueous NaOH
- c) By treating with a strong reducing agent
- d) By treating with Mg metal

Q127) Iodoform can be prepared from all except:

- a) isopropyl alcohol b) 3-methyl-2-butanone
- c) isobutyl alcohol d) ethyl methyl ketone

Q128) Aqueous NaOH solution is added to a mixture of benzaldehyde and formaldehyde to produce

- a) Benzyl alcohol + sodium formate
- b) Sodium benzoate + methanol
- c) Benzyl alcohol + methanol
- d) Sodium benzoate+sodium formate
- Q129) Carboxylic acid on reduction with HI/ phosphorous yields
 - a) Alkane b) Alcohols
 - c) Aldehydes d) Ketones
- Q130) What will be the reactivity order of the following with water?
 - a) Acid halide > ester > acid anhydride > amide
 - b) Acid anhydride > amide > acid halide > ester
 - c) Amide > ester > acid anhydride > acid halide
 - d) Acid halide > acid anhydride > ester > amide

Q131) Which of the following is used as a reactant for the nitration of benzene to form nitrobenzene?

- a) HNO₂
- b) HNO₃
- c) Mixture of HNO_2 and HNO_3
- d) Mixture of HNO₃ and H₂SO₄
- Q132) Which of the following statements concerning methylamine is correct?
 - a) Methyl amine is stronger base than NH₃
 - b) Methyl amine is less basic than NH₃
 - c) Methyl amine is slightly acidic
 - d) Methyl amine forms salts with alkali
- Q133) Glucose will show mutarotation when solvent
 - is
 - a) Acidic b) Basic
 - c) Amphoteric d) Neutral

- Q134) Beriberi is caused due by the deficiency ofa) Vitamin C b) Vitamin B2
 - c) Vitamin B d) Vitamin B1
- Q135) Which of the following Greenhouse Gases isPresent in Very High Quantities?a) Carbon dioxideb) Ethane
 - c) Propane d) Methane
- Q136) Which of the following is not a law of chemical combination?
 - a) Law of Multiple Proportions
 - b) Avogadro's Law
 - c) Law of Definite Proportion
 - d) Law of Conservation of volume
- Q137) According to Bohr model of hydrogen atom, relation between principal quantum number n and radius r of stable orbit:
 - a) $r \alpha \frac{1}{n}$ b) $r \alpha n$ c) $r \alpha \frac{1}{n^2}$ d) $r \alpha n^2$
- Q138) The position and velocity of small particle like electron cannot be simultaneously determined. This statement is for
 - a) Heisenberg uncertainty principle
 - b) Principle of de Broglie's wave nature of electron
 - c) Pauli's exclusion principle
 - d) Aufbau's principle

Q139) Le Chatelier Principle is applicable to

- a) Heterogeneous reaction
- b) Homogeneous reaction
- c) Irreversible reactions
- d) System in equilibrium
- Q140) Ostwald's dilution law is applicable to
 - a) Strong electrolytes only
 - b) Weak electrolytes only
 - c) Non-electrolytes
 - d) Strong as well as weak electrolytes
- Q141) What is the pH of 0.0001molar HCl solution

a) 1	b) 2
c) 3	d) 4

- Q142) Which of the following is not a type of Basic buffer mixture?
 - a) *NH*₄*OH*
 - b) NH_4Cl
 - c) $H_2CO_3 + Na_2CO_3$
 - d) Glycine + Glycine hydrochloride

SET-B Q143) What effect does temperature have on the	Q151) Oxidation number of P in PO_4^{3-} , of S in SO_4^{2-}
half-life of a first-order reaction?	and that of Cr in $Cr_2O_7^{2-}$ are respectively:
a) It increases	a) $+3$, $+6$ and $+5$ b) $+5$, $+3$ and $+6$
b) It decreases	c) +3, +6 and +6 d) +5, +6 and +6
c) It remains the same	
d) Both increases as well as decrease	Q152) What is the number of electrons transferred in
	an equation if the Nernst equation is
Q144) The unit of rate constant for second order	$E (cell) = E^{\circ}(cell) - 9.83 \times 10^{-3} \times \log_{10}$
reaction is -2 -2 -1	(Anode/Cathode)?
 a) litre mole⁻² sec⁻² b) litre mole⁻² sec⁻¹ c) litre d) litre mole⁻¹ sec⁻¹ 	a) 2 b) 6
c) litre d) litre mole ⁻¹ sec ⁻¹	c) 4 d) 1
Q145) Which condition holds for the ideal solution?	Q153) Which of the following is a specific
a) Change in volume is zero	conductivity reagent?
b) Change in volume is non-zero	a) <i>KCl</i> b) <i>HCl</i>
c) Change in enthalpy is non-zero	c) $NaCl$ d) $MgCl_2$
d) None of the above	
	Q154) Schottky defect in a crystal is observed when
Q146) The van't Hoff factor for a compound that	a) The ion leaves its normal position and
undergoes dissociation and association in a	occupies an interstitial location b) The unequal number of cations and anions
solvent is respectively	are missing from the lattice
a) Less than one and less than one	c) The density of the crystal increases
b) Greater than one and less than one	d) An equal number of cations and anions are
c) Greater than one and greater than oned) Less than one and Greater than one	missing from the lattice
d) Less than one and Greater than one	
(147) What will be the value of ΔH , if the forward	Q155) What is the process of producing electric
and reverse reactions have the same energy	dipoles inside the dielectric by an external
of activation?	electric field
a) $\Delta H = \Delta G = \Delta S = 0$ b) $\Delta S = 0$	a) Polarisation b) Dipole moment
c) $\Delta G = 0$ d) $\Delta H = 0$	c) Susceptibility d) Magnetisation
	Q156) Which of the following metals would have
Q148) Hess's law states that a chemical reaction is	the highest packing efficiency
independent of the route by which chemical	a) Copper b) Potassium
reaction takes place while keeping the same	c) Chromium d) Polonium
a) Initial conditions only b) Final conditions only	O157) How the energial share find
b) Final conditions onlyc) Mid-conditions	Q157) How the crystal classified
d) Initial and final conditions	a) According to place of originb) According to the position of the unit cell
d) million and million conditions	c) According to the position of the unit cell
Q149) The enthalpy of formation of $CO_2(g)$, $H_2O(l)$	d) According to the purity of the unit cell
and Propene(g) are -395.5, -285.8 and	
20.42KJ mol ⁻¹ respectively. The enthalpy	Q158) Which of the following isotherm is applicable
change for the combustion of cyclopropane	to physical adsorption?
at 298K will be(The enthalpy of isomerisation	a) Langmuir b) BET
of cyclopropane to propane is -33.0KJ mol ⁻¹)	c) Freundlich d) Kisluik
a) -1021.32 KJ mol ⁻¹ b) -20911.32 KJ mol ⁻¹	Q159) Polymers are not classified on the basis of
	which of the following
c) -5021.32 KJ mol ⁻¹ d) -3141.32 KJ mol ⁻¹	a) Source
	b) Number of monomers
Q150) The correct relationship between free energy	c) Method of preparation
change in a reaction and the corresponding	d) Structure
equilibrium constant K_C is	
a) $-\Delta G = RT InK_C$ b) $\Delta G^\circ = RT InK_C$	
c) $-\Delta G^{\circ} = RT InK_C$ d) $\Delta G = RT InK_C$	

UG	CET-2022
00	CL1-2022

SEI-B					
Q160)	Which one will have	e the highest 2 nd	Q171)	The colour of trans	sition metal is due to
	ionisation energy?			a) presence of unp	aired d-electron
	a) $1s^2 2s^2 2p^6 3s^1$	b) $1s^2 2s^2 2p^4$		b) d-d transition	
	a) $1s^2 2s^2 2p^6 3s^1$ c) $1s^2 2s^2 2p^6$	d) $1s^2 2s^2 2p^6 3s^2$		c) nature of ligand	s at geometry of complex
				d) All of the above	
Q161)		along the periods			
	a) Increases	b) Decreases	Q172) V	Which of the follow	wing is an alloy of iron?
	c) Remains constant	d) Irregular		a) Vitallium	b) Brass
				c) Invar	d) Solder
Q162)	Molecular orbitals a	re filled according to			
	a) Aufbau's princip	le		-	that octahedral, tetrahedral
	b) Hund's rule			and square planer	geometrical shapes are
	c) Pauli's Exclusion	Principle		more common in o	coordination compounds of
	d) All these	-		a) Alkali metals	b) Lanthanides
	,			c) Actinides	d) Transition metals
0163)	The maximum num	per of 90° angles between			
		of electrons is observed in	Q174)	Which of the follow	wing is not a subdivision of
		b) $sp^{3}d$ hybridisation		structural isomeris	sm?
				a) Geometrical iso	omerism
	c) dsp ³ hybridisation	n d) sp^3d^2 hybridisation		b) Linkage isomer	ism
				c) Coordination is	
Q164)	In BrF ₃ , lone pairs a	-		d) Ionisation isom	erism
	equatorial positions	s. This is to minimise		,	
	a) bp-bp repulsion of	only b) lp-lp repulsion only	0175)	Which of the follo	wing is not considered as
		nly d) both (B) and (C)	- /	an organometallic	-
	•) ip op iop motori o	(c)		a) Ferrocene	
0165)	O-O bond length is	ninimum in		c) Ziese's salt	_
Q105)	a) O_2^-	b) O_2		,	, 6 6
		,	Q176) -	and	are ores of copper
	c) O_2^+	d) $O_2^{2^-}$		a) Dolomite, borni	
				b) Bornite, chalco	
Q166)	The flame of caesium	n is in the colour		c) Chalcopyrite, d	
	a) White	b) Red violet		d) Bornite, magne	
	c) Yellow	d) Blue		, , , ,	
01(7)		.1 1 . 1 . 1	Q177)	The product from I	plast furnace is called
Q167)	The correct order of	•		a) Cast iron	b) Wrought iron
	following carbonate			c) Pig iron	d) Steel
	a) $BaCO_3 > CaCO_3$				
		> CaCO ₃ $>$ MgCO ₃	Q178) J	IUPAC name of th	e (CH_3) ₂ $CHCH(CH_3)$ ₂ is
	c) $MgCO_3 > CaCO_3$			a) 1, 1, 2, 3-tetram	ethylethane
	d) MgCO ₃ > CaCO ₃	> BaCO ₃ $>$ SrCO ₃		b) 1, 2-di-isopropy	lethane
01(0)	XX71 (1 (c) 2, 3-dimethylbu	Itane
Q168)		oxidation states shown		d) 2, 3, 3-trimethy	lbutane
	by nitrogen in its ox				
	a) +1 to +3	b) +2 to +4	~ /		ct is also known as
	c) +1 to +2	d) +1 to +5			on b) Inductive effect
01(0)	Which of the fellow	in a is the servest and an of		c) Mesomeric effe	ct d) Electromeric effect
		ing is the correct order of	0100) 1		1.
Q169)		pernalates		•	ect statement regarding
Q169)	oxidising power of			aromaticity.	
Q169)	a) $BrO_4 > ClO_4 > 1$	O_4		\rightarrow T ₄ := 41 =	-1.11.4
Q169)	a) $BrO_4^- > ClO_4^- > 1$ b) $IO_4^- > BrO_4^- > 0$	O ₄ ClO ₄			ability possessed by a
Q169)	a) $BrO_4^- > ClO_4^- > 1$ b) $IO_4^- > BrO_4^- > 0$ c) $IO_4^- > ClO_4^- > BrO_4^- > 0$	O ₄ ClO ₄ BrO ₄		molecule	
2169)	a) $BrO_4^- > ClO_4^- > 1$ b) $IO_4^- > BrO_4^- > 0$	O ₄ ClO ₄ BrO ₄		molecule b) p-orbitals must	be planar and overlap
	a) $BrO_4 > ClO_4 > 1$ b) $IO_4 > BrO_4 > 0$ c) $IO_4 > ClO_4 > 0$ d) $BrO_4 > IO_4 > 0$	O_4 ClO_4 BrO_4 ClO_4		molecule b) p-orbitals must c) Cyclic delocaliz	be planar and overlap ation takes place
	a) $BrO_4^- > ClO_4^- > I$ b) $IO_4^- > BrO_4^- > O$ c) $IO_4^- > ClO_4^- > H$ d) $BrO_4^- > IO_4^- > O$	O_4^{-1} ClO_4^{-1} BrO_4^{-1} ClO_4^{-1} tion state of Lanthanide is		molecule b) p-orbitals must	be planar and overlap ation takes place
	a) $BrO_4 > ClO_4 > 1$ b) $IO_4 > BrO_4 > 0$ c) $IO_4 > ClO_4 > 0$ d) $BrO_4 > IO_4 > 0$	O_4 ClO_4 BrO_4 ClO_4		molecule b) p-orbitals must c) Cyclic delocaliz	be planar and overlap zation takes place